459 research outputs found

    Long term variability of Cygnus X-1: VII. Orbital variability of the focussed wind in Cyg X-1 / HDE 226868 system

    Full text link
    Binary systems with an accreting compact object are a unique chance to investigate the strong, clumpy, line-driven winds of early type supergiants by using the compact object's X-rays to probe the wind structure. We analyze the two-component wind of HDE 226868, the O9.7Iab giant companion of the black hole Cyg X-1 using 4.77 Ms of RXTE observations of the system taken over the course of 16 years. Absorption changes strongly over the 5.6 d binary orbit, but also shows a large scatter at a given orbital phase, especially at superior conjunction. The orbital variability is most prominent when the black hole is in the hard X-ray state. Our data are poorer for the intermediate and soft state, but show signs for orbital variability of the absorption column in the intermediate state. We quantitatively compare the data in the hard state to a toy model of a focussed Castor-Abbott-Klein-wind: as it does not incorporate clumping, the model does not describe the observations well. A qualitative comparison to a simplified simulation of clumpy winds with spherical clumps shows good agreement in the distribution of the equivalent hydrogen column density for models with a porosity length on the order of the stellar radius at inferior conjunction; we conjecture that the deviations between data and model at superior conjunction could be either due to lack of a focussed wind component in the model or a more complicated clump structure.Comment: proposed for acceptance in A&A, 11 pages, 11 figures (two in appendix

    TANAMI - Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry

    Full text link
    We present a summary of the observation strategy of TANAMI (Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry), a monitoring program to study the parsec-scale structure and dynamics of relativistic jets in active galactic nuclei (AGN) of the Southern Hemisphere with the Australian Long Baseline Array (LBA) and the trans-oceanic antennas Hartebeesthoek, TIGO, and O'Higgins. TANAMI is focusing on extragalactic sources south of -30 degrees declination with observations at 8.4 GHz and 22 GHz every ~2 months at milliarcsecond resolution. The initial TANAMI sample of 43 sources has been defined before the launch of the Fermi Gamma Ray Space Telescope to include the most promising candidates for bright gamma-ray emission to be detected with its Large Area Telescope (LAT). Since November 2008, we have been adding new sources to the sample, which now includes all known radio- and gamma-ray bright AGN of the Southern Hemisphere. The combination of VLBI and gamma-ray observations is crucial to understand the broadband emission characteristics of AGN and the nature of relativistic jets.Comment: Conference proceedings "2009 Fermi Symposium" eConf Proceedings C09112

    Dual-frequency VLBI study of Centaurus A on sub-parsec scales

    Get PDF
    Centaurus A is the closest active galactic nucleus. High resolution imaging using Very Long Baseline Interferometry (VLBI) enables us to study the spectral and kinematic behavior of the radio jet-counterjet system on sub-parsec scales, providing essential information for jet emission and formation models. Our aim is to study the structure and spectral shape of the emission from the central-parsec region of Cen A. As a target of the Southern Hemisphere VLBI monitoring program TANAMI (Tracking Active Galactic Nuclei with Milliarcsecond Interferometry), VLBI observations of Cen A are made regularly at 8.4 and 22.3 GHz with the Australian Long Baseline Array (LBA) and associated telescopes in Antarctica, Chile, and South Africa. The first dual-frequency images of this source are presented along with the resulting spectral index map. An angular resolution of 0.4 mas x 0.7 mas is achieved at 8.4 GHz, corresponding to a linear scale of less than 0.013 pc. Hence, we obtain the highest resolution VLBI image of Cen A, comparable to previous space-VLBI observations. By combining with the 22.3 GHz image, which has been taken without contributing transoceanic baselines at somewhat lower resolution, we present the corresponding dual-frequency spectral index distribution along the sub-parsec scale jet revealing the putative emission regions for recently detected gamma-rays from the core region by Fermi/LAT. We resolve the innermost structure of the milliarcsecond scale jet and counterjet system of Cen A into discrete components. The simultaneous observations at two frequencies provide the highest resolved spectral index map of an AGN jet allowing us to identify multiple possible sites as the origin of the high energy emission.Comment: 5 pages, 3 figures (1 color); A&A, accepte

    Pattern Recognition and Event Reconstruction in Particle Physics Experiments

    Full text link
    This report reviews methods of pattern recognition and event reconstruction used in modern high energy physics experiments. After a brief introduction into general concepts of particle detectors and statistical evaluation, different approaches in global and local methods of track pattern recognition are reviewed with their typical strengths and shortcomings. The emphasis is then moved to methods which estimate the particle properties from the signals which pattern recognition has associated. Finally, the global reconstruction of the event is briefly addressed.Comment: 101 pages, 58 figure

    TANAMI monitoring of Centaurus A: The complex dynamics in the inner parsec of an extragalactic jet

    Get PDF
    Context. Centaurus A (Cen A) is the closest radio-loud active galactic nucleus. Very Long Baseline Interferometry (VLBI) enables us to study the spectral and kinematic behavior of the radio jet¿counterjet system on milliarcsecond scales, providing essential information for jet emission and propagation models. Aims. In the framework of the TANAMI monitoring, we investigate the kinematics and complex structure of Cen A on subparsec scales. We have been studying the evolution of the central parsec jet structure of Cen A for over 3.5 years. The proper motion analysis of individual jet components allows us to constrain jet formation and propagation and to test the proposed correlation of increased high-energy flux with jet ejection events. Cen A is an exceptional laboratory for such a detailed study because its proximity translates to unrivaled linear resolution, where one milliarcsecond corresponds to 0.018 pc. Methods. As a target of the southern-hemisphere VLBI monitoring program TANAMI, observations of Cen A are done approximately every six months at 8.4 GHz with the Australian Long Baseline Array (LBA) and associated telescopes in Antarctica, Chile, New Zealand, and South Africa, complemented by quasi-simultaneous 22.3 GHz observations. Results. The first seven epochs of high-resolution TANAMI VLBI observations at 8.4 GHz of Cen A are presented, resolving the jet on (sub-)milliarcsecond scales. They show a differential motion of the subparsec scale jet with significantly higher component speeds farther downstream where the jet becomes optically thin. We determined apparent component speeds within a range of 0.1c to 0.3c and identified long-term stable features. In combination with the jet-to-counterjet ratio, we can constrain the angle to the line of sight to theta approx 12deg-45deg. Conclusions. The high-resolution kinematics are best explained by a spine-sheath structure supported by the downstream acceleration occurring where the jet becomes optically thin. On top of the underlying, continuous flow, TANAMI observations clearly resolve individual jet features. The flow appears to be interrupted by an obstacle causing a local decrease in surface brightness and circumfluent jet behavior. We propose a jet-star interaction scenario to explain this appearance. The comparison of jet ejection times to high X-ray flux phases yields a partial overlap of the onset of the X-ray emission and increasing jet activity, but the limited data do not support a robust correlation

    Systematics of Inclusive Photon Production in 158 AGeV Pb Induced Reactions on Ni, Nb, and Pb Targets

    Get PDF
    The multiplicity of inclusive photons has been measured on an event-by-event basis for 158 AGeV Pb induced reactions on Ni, Nb, and Pb targets. The systematics of the pseudorapidity densities at midrapidity (rho_max) and the width of the pseudorapidity distributions have been studied for varying centralities for these collisions. A power law fit to the photon yield as a function of the number of participating nucleons gives a value of 1.13+-0.03 for the exponent. The mean transverse momentum, , of photons determined from the ratio of the measured electromagnetic transverse energy and photon multiplicity, remains almost constant with increasing rho_max. Results are compared with model predictions.Comment: 16 pages including 4 figure

    Limits on the production of direct photons in 200 A GeV32^{32}S + Au collisions

    Get PDF
    A search for the production of direct photons in S+Au collisions at 200\cdotA~GeV has been carried out in the CERN-WA80 experiment. For central collisions the measured photon excess at each p_T, averaged over the range 0.5~GeV/c~ \leq p_T \leq 2.5~GeV/c, corresponded to 5.0\% of the total inclusive photon yield with a statistical error of \sigma_{\rm stat}=0.8\% and a systematic error of \sigma_{\rm syst}=5.8\%. Upper limits on the invariant yield for direct photon production at the 90\%~C.L. are presented. Possible implications for the dynamics of high-energy heavy-ion collisions are discussed

    Metabolic Deficiences Revealed in the Biotechnologically Important Model Bacterium Escherichia coli BL21(DE3)

    Get PDF
    The Escherichia coli B strain BL21(DE3) has had a profound impact on biotechnology through its use in the production of recombinant proteins. Little is understood, however, regarding the physiology of this important E. coli strain. We show here that BL21(DE3) totally lacks activity of the four [NiFe]-hydrogenases, the three molybdenum- and selenium-containing formate dehydrogenases and molybdenum-dependent nitrate reductase. Nevertheless, all of the structural genes necessary for the synthesis of the respective anaerobic metalloenzymes are present in the genome. However, the genes encoding the high-affinity molybdate transport system and the molybdenum-responsive transcriptional regulator ModE are absent from the genome. Moreover, BL21(DE3) has a nonsense mutation in the gene encoding the global oxygen-responsive transcriptional regulator FNR. The activities of the two hydrogen-oxidizing hydrogenases, therefore, could be restored to BL21(DE3) by supplementing the growth medium with high concentrations of Ni2+ (Ni2+-transport is FNR-dependent) or by introducing a wild-type copy of the fnr gene. Only combined addition of plasmid-encoded fnr and high concentrations of MoO42− ions could restore hydrogen production to BL21(DE3); however, to only 25–30% of a K-12 wildtype. We could show that limited hydrogen production from the enzyme complex responsible for formate-dependent hydrogen evolution was due solely to reduced activity of the formate dehydrogenase (FDH-H), not the hydrogenase component. The activity of the FNR-dependent formate dehydrogenase, FDH-N, could not be restored, even when the fnr gene and MoO42− were supplied; however, nitrate reductase activity could be recovered by combined addition of MoO42− and the fnr gene. This suggested that a further component specific for biosynthesis or activity of formate dehydrogenases H and N was missing. Re-introduction of the gene encoding ModE could only partially restore the activities of both enzymes. Taken together these results demonstrate that BL21(DE3) has major defects in anaerobic metabolism, metal ion transport and metalloprotein biosynthesis
    corecore